Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tobias Van Almsick and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Correspondence e-mail:
william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma($ As-C) $=0.018 \AA$
R factor $=0.047$
$w R$ factor $=0.125$
Data-to-parameter ratio $=25.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Caesium dimethyldiselenidoarsenate(V)

The title compound, $\mathrm{Cs}\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}_{2}\right]$, contains discrete tetrahedral dimethyldiselenidoarsenate(V) anions and Cs cations, with As and Cs located on a crystallographic twofold rotation axis. A distorted octahedral coordination is observed for the caesium counter-cation, with Cs...Se distances in the range 3.706 (2)-3.762 (2) \AA.

Comment

The isolated $\mathrm{AsSe}_{4}{ }^{3-}$ anion has been structurally characterized in $\left[\mathrm{Li}\left(\mathrm{NH}_{3}\right)_{4}\right]_{3} \mathrm{AsSe}_{4}$ (Korber \& Grothe, 2001), $\mathrm{Na}_{3} \mathrm{As}$ $\mathrm{Se}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (Krebs et al., 1990), $\mathrm{Rb}_{3} \mathrm{AsSe}_{4}$ and $\mathrm{Cs}_{3} \mathrm{AsSe}_{4}$ (Wachhold \& Sheldrick, 1996), $\mathrm{Rb}_{3} \mathrm{AsSe}_{4} \cdot \mathrm{Se}_{6}$ and $\mathrm{Cs}_{3} \mathrm{As}$ $\mathrm{Se}_{4} \cdot 2 \mathrm{Cs}_{2} \mathrm{As}_{2} \mathrm{Se}_{4} \cdot 6 \mathrm{Te}_{4} \mathrm{Se}_{2}$ (Wachhold \& Sheldrick, 1997), as well as in $\mathrm{Ba}_{2} \mathrm{AsSe}_{4}(\mathrm{OH}) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Kaub, 1986). In contrast, examples of substituted selenidoarsenate (V) anions are limited to $\left[\mathrm{AsO}_{3} \mathrm{Se}\right]^{3-},\left[\mathrm{As}\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{Se}_{3}\right]^{2-}$ and $\left[\mathrm{AsPh}_{2} \mathrm{Se}_{2}\right]^{-}$, in respectively $\mathrm{Na}_{3}\left(\mathrm{AsO}_{3} \mathrm{Se}\right) \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (Krebs et al., 1990), $[\mathrm{K}(2.2 .2-$ crypt $)]_{2}\left[\mathrm{As}\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{Se}_{3}\right]$ (2.2.2-crypt $=4,7,13,16,21,24$-hexa-oxa-1,10-diazabicyclo[8.8.8]hexacosane; Smith et al., 1998) and $\left(\mathrm{pipH}_{2}\right)\left(\mathrm{AsPh}_{2} \mathrm{Se}_{2}\right)(\mathrm{pipH}=$ piperidine; Kanda et al., 1998). Methanolothermal conditions (Sheldrick \& Wachhold, 1997; Sheldrick \& Wachhold, 1998) were employed for the preparation of the alkali metal tetraselenidoarsenates(V) $\mathrm{Rb}_{3} \mathrm{AsSe}_{4}$ and $\mathrm{Cs}_{3} \mathrm{AsSe}_{4}$ from $\mathrm{As}_{2} \mathrm{Se}_{3}$ and Se in the presence of $M_{2} \mathrm{CO}_{3}(M=\mathrm{Rb}, \mathrm{Cs})$ at 453 K . The unique $\left[\mathrm{As}\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\mathrm{CN}) \mathrm{Se}_{3}\right]^{2-}$ anion of $[\mathrm{K}(2.2 .2 \text {-crypt })]_{2}\left[\mathrm{As}\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{Se}_{3}\right]$ was obtained by reaction of K , As, Se and (2.2.2-crypt) in NH_{3} at 195 K followed by acetonitrile extraction of the solid products and subsequent crystallization. We therefore postulated that it might be possible to isolate analogous methylselenidoarsenates (V) such as $\left[\mathrm{As}\left(\mathrm{CH}_{3}\right) \mathrm{Se}_{3}\right]^{2-}$ or $\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}_{2}\right]^{-}$from methanolic selenidoarsenate solutions under oxidizing crystallization conditions.

To this end, $\mathrm{CsAsSe}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Sheldrick \& Kaub, 1986) was dissolved in methanol at 463 K and, following cooling to 293 K, the mother liquor was left to crystallize in air. For the given As:Se ratio of 1:3, the formation of a substituted selenidoarsenate (V) was to be expected.

The $\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}_{2}\right]^{-}$anions of the resulting title compound $\mathrm{Cs}\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}_{2}\right]$, (I), display crystallographic twofold rota-

Received 4 November 2005 Accepted 15 November 2005 Online 23 November 2005

Figure 1
The $\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}_{2}\right]^{-}$anion and Cs cation of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $-x+1, y$, $-z+\frac{1}{2}$.]

Figure 2
Projection of the structure of (I) perpendicular to [001]. Atom colour codes: Cs green cross-hatched circles, C black shaded circles, Se orange hatched circles, As red dotted circles, H blue open circles.
tion symmetry with Cs and As located on a twofold rotation axis. The caesium counter-cations are coordinated in a distorted octahedral fashion through six symmetry-related Se atoms (Table 1). A significant shortening is observed for the As-Se bond length [2.262 (2) A] of (I) in comparison with the tetraselenidoarsenate (V) anions of $\mathrm{Rb}_{3} \mathrm{AsSe}_{4}$ and $\mathrm{Cs}_{3} \mathrm{AsSe}_{4}$, for which distances in the range 2.306 (3)2.336 (3) A were reported (Wachhold \& Sheldrick, 1996). This marked bond strengthening is in accordance with the increase in the formal bond order from 1.25 in $\mathrm{AsSe}_{4}{ }^{3-}$ to 1.5 in $\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Se}_{2}\right]^{-}$. As a result of the partial double-bond character of the participating As-Se bonds, the $\mathrm{Se}-\mathrm{As}-\mathrm{Se}$ angle [117.5 (1) ${ }^{\circ}$] is much wider than the $\mathrm{C}-\mathrm{As}-\mathrm{C}$ angle of 106.4 (1) ${ }^{\circ}$.

Experimental

$\mathrm{CsAsSe}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}(300 \mathrm{mg}, 136.1 \mathrm{mmol})$ (Sheldrick \& Kaub, 1986) was heated to 463 K in methanol $(0.8 \mathrm{ml})$ in a sealed glass tube. After cooling to 293 K , the mother liquor was separated from the solid contents and allowed to evaporate slowly in air to afford colourless crystals of (I) in 28% yield.

Crystal data

$\mathrm{Cs}^{+} . \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{AsSe}_{2}^{-}$
$M_{r}=359.82$
Monoclinic, $C 2 / c$
$a=9.858(2) \AA$
$b=10.027(2) \AA$
$c=9.787(2) \AA$
$\beta=115.92(3)$
$V=870.1(3) \AA^{\circ}$
$Z=4$

$$
D_{x}=3.022 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

Cell parameters from 19 reflections
$\theta=6.1-14.9^{\circ}$
$\mu=16.30 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colourless
$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Siemens $P 4$ four-circle diffractometer
ω scans
Absorption correction: ψ-scan
(XPREP in SHELXTL-Plus;
Sheldrick, 1995)
$T_{\text {min }}=0.153, T_{\text {max }}=0.275$
807 measured reflections
759 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.125$
$S=1.08$
759 reflections
30 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.066 P)^{2}\right. \\
& +8.7148 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.13 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.20 \text { e } \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cs}-\mathrm{Se}^{\mathrm{i}}$	$3.7063(17)$	$\mathrm{Cs}-\mathrm{Se}^{\mathrm{v}}$	$3.7617(17)$
$\mathrm{Cs}-\mathrm{Se}^{\mathrm{ii}}$	$3.7063(17)$	$\mathrm{As}-\mathrm{C}^{\text {iii }}$	$1.924(14)$
$\mathrm{Cs}-\mathrm{Se}^{\mathrm{iiii}}$	$3.7509(18)$	$\mathrm{As}-\mathrm{C}$	$1.924(14)$
$\mathrm{Cs}-\mathrm{Se}^{\mathrm{ii}}$	$3.7509(18)$	$\mathrm{As}-\mathrm{Se}^{\mathrm{iii}}$	$2.2621(15)$
$\mathrm{Cs}-\mathrm{Se}^{\mathrm{iv}}$	$3.7617(17)$	$\mathrm{As}-\mathrm{Se}^{\mathrm{iii}}$	$2.2621(15)$
$\mathrm{C}^{\mathrm{iii}}-\mathrm{As}-\mathrm{C}$	$106.4(12)$	$\mathrm{Ciii}^{\mathrm{iii}}-\mathrm{As}-\mathrm{Se}^{\mathrm{iiii}}$	$108.4(5)$
$\mathrm{C}_{\mathrm{iii}}-\mathrm{As}-\mathrm{Se}$	$107.9(5)$	$\mathrm{C}-\mathrm{As}-\mathrm{Se}^{\mathrm{iii}}$	$107.9(5)$
$\mathrm{C}-\mathrm{As}-\mathrm{Se}$	$108.4(5)$	$\mathrm{Se}-\mathrm{As}-\mathrm{Se}^{\mathrm{iii}}$	$117.45(10)$

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+1, y,-z+\frac{1}{2}$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $x+\frac{1}{2}, y-\frac{1}{2}, z$.

The methyl H atoms were refined as riding, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The methyl group was allowed to rotate but not to tip. The highest peak in the final difference Fourier synthesis is sited $0.93 \AA$ from As and the deepest hole $0.87 \AA$ from As.

Data collection: $R 3 m / V$ (Siemens, 1989); cell refinement: $R 3 m / V$; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1995); software used to prepare material for publication: SHELXL97.

metal-organic papers

References

Kanda, T., Mizoguchi, K., Kagohashi, S. \& Kato, S. (1998). Organometallics, 17, 1487-1491.
Kaub. J. (1986). Z. Naturforsch. Teil B, 41, 436-438.
Korber, N. \& Grothe, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 177178.

Krebs, B., Hürter, H. U., Enax, J. \& Fröhlich, R. (1990). Z. Anorg. Allg. Chem. 581, 141-152.
Sheldrick, G. M. (1995). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, W. S. \& Kaub, J. (1986). Z. Anorg. Allg. Chem. 535, 179-185.
Sheldrick, W. S. \& Wachhold, M. (1997). Angew. Chem. Int. Ed. Engl. 36, 206 224

Sheldrick, W. S. \& Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.
Siemens (1989). R3m/V. Version 3.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Smith, D. M., Albrecht-Schmitt, T. E. \& Ibers, J. A. (1998). Angew. Chem. Int. Ed. Engl. 37, 1089-1091.
Wachhold, M. \& Sheldrick, W. S. (1996). Z. Naturforsch. Teil B, 51, 32-36.
Wachhold, M. \& Sheldrick, W. S. (1997). Z. Naturforsch. Teil B, 52, 169 175.

